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Methane (CH4) impacts climate as the second strongest anthropo-
genic greenhouse gas and air quality by influencing tropospheric
ozone levels. Space-based observations have identified the Four
Corners region in the Southwest United States as an area of large
CH4 enhancements. We conducted an airborne campaign in Four
Corners during April 2015 with the next-generation Airborne Vis-
ible/Infrared Imaging Spectrometer (near-infrared) and Hyperspec-
tral Thermal Emission Spectrometer (thermal infrared) imaging
spectrometers to better understand the source of methane by
measuring methane plumes at 1- to 3-m spatial resolution. Our
analysis detected more than 250 individual methane plumes from
fossil fuel harvesting, processing, and distributing infrastructures,
spanning an emission range from the detection limit ∼ 2 kg/h to
5 kg/h through ∼ 5,000 kg/h. Observed sources include gas process-
ing facilities, storage tanks, pipeline leaks, and well pads, as well as a
coal mine venting shaft. Overall, plume enhancements and inferred
fluxes follow a lognormal distribution, with the top 10% emitters
contributing 49 to 66% to the inferred total point source flux of
0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognor-
mal emission distribution, this airborne observing strategy and its
ability to locate previously unknown point sources in real time pro-
vides an efficient and effectivemethod to identify andmitigatemajor
emissions contributors over a wide geographic area. With improved
instrumentation, this capability scales to spaceborne applications
[Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Fur-
ther illustration of this potential is demonstrated with two detected,
confirmed, and repaired pipeline leaks during the campaign.
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Global spaceborne measurements of methane with the Scan-
ning Imaging Absorption Spectrometer for Atmospheric

Chartography (SCIAMACHY) instrument (1) revealed a meth-
ane anomaly in the Four Corners region, with an estimated regional
emission of 0.59 Tg/y (2). This study explores the role of point
sources that supposedly drive the regional enhancement throughout
the San Juan Basin in Four Corners.
The San Juan Basin is primarily a natural gas production area,

mostly from coal bed methane and shale formations. More than
20,000 oil and gas wells operate in the basin, and, for 2009, the
US Energy Information Administration reported an overall
annual gas production of 1.3 trillion cubic feet, equivalent to
19.2 Tg CH4/y.
To estimate methane emissions from oil and gas facilities, the

Environmental Protection Agency uses a process-based approach
that assumes a normal distribution of emissions for each process
used in extraction, processing, and distribution. In reality, the flux
distribution can be heavily skewed, resulting in a heavy-tailed dis-
tribution. This suggests that a relatively small percent of the
sources in a given field may dominate the overall budget. The role
of heavy-tail distributions has been discussed as a possible reason

for underestimated methane emissions in bottom-up inventories
(3–5). Although the heavy-tailed distribution makes it more diffi-
cult to estimate emissions using a process-based (or bottom up)
approach, it suggests that mitigation of field-wide emissions such as
those estimated for Four Corners will be less costly because it only
requires identifying and fixing a few emitters.
However, evaluating the distribution and role of point

sources in large geographical areas with limited road access is
too time-consuming without prior knowledge of suspected lo-
cations. We conducted an intensive airborne campaign in April
2015 to overcome this shortcoming and directly measure the
source distribution, identify strong emitters, and provide real-
time feedback to ground teams. We flew two NASA/Jet Pro-
pulsion Laboratory airborne imaging spectrometers, namely, the
next-generation Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS-NG) (6) and the Hyperspectral Thermal Emission
Spectrometer (HyTES).
Recent studies have shown that both can retrieve methane

quantitatively using methane absorption features in the short-
wave infrared around 2.3 μm [AVIRIS-NG (7, 8)] and in the
thermal infrared around 7.65 μm [HyTES (ref. 9 or refs. 10 and
11)]. Here, we report on the experiment design as well results
from both instruments, having successfully identified more than
250 individual point sources, for which quantitative flux esti-
mates are derived.

Significance

Fugitive methane emissions are thought to often exhibit a heavy-
tail distribution (more high-emission sources than expected in a
normal distribution), and thus efficient mitigation is possible if
we locate the strongest emitters. Here we demonstrate airborne
remote measurements of methane plumes at 1- to 3-m ground
resolution over the Four Corners region. We identified more than
250 point sources, whose emissions followed a lognormal distri-
bution, a heavy-tail characteristic. The top 10% of emitters ex-
plain about half of the total observed point source contribution
and ∼1/4 the total basin emissions. This work demonstrates the
capability of real-time airborne imaging spectroscopy to perform
detection and categorization of methane point sources in ex-
tended geographical areas with immediate input for emissions
abatement.
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Experiment Design
The overarching strategy was to map most of the identified
methane hotspot in Four Corners (2), covering an area of around
80 × 40 km2. Fig. 1 provides an overview of the study area, in-
dicating a focus on the northwestern part of the San Juan Basin
and its outcrop area toward the west (coal mine) and north. We
covered a large box between 36.66 to 37°N and 107.66 to
108.33°W, east of the Total Carbon Column Observing Network
(TCCON) Four Corners site (12), which operated until March
2014. Additional flight lines covered the coal mine a few kilo-
meters east of the TCCON site as well as the natural outcrop
area and smaller areas in Colorado near our home base at the
Durango airport.
In most cases, AVIRIS-NG flew at about 3 km above ground

level (AGL), allowing a wider swath to map larger areas, whereas
HyTES flew at 1 km AGL, leveraging the enhanced methane
sensitivities of the thermal band when flying low. For AVIRIS-NG,
we used a recently developed real-time detection algorithm (13),
enabling us to both identify and geolocate methane plumes in
flight. This software allowed us to (i) convey plume locations to the
ground-based teams for follow-up investigations and (ii) perform
spontaneous repeat overflights or provide guidance for additional

flight lines in the following days. For some of the ambiguous
findings, ground-based verification could thus be performed dur-
ing the flight campaign, often on the same day.

Results
HyTES. For HyTES, we used a Clutter Matched Filter Approach
(CMF) (Materials and Methods) to isolate methane plumes.
Some examples are shown in Fig. 2, ranging from a small plume
to one emanating from a storage tank, extending almost 1 km.
Even though HyTES didn’t have a real-time retrieval capability

during the campaign, some locations could be corroborated by our
ground team if the plumes had been detected by AVIRIS-NG as
well. The large plume in Fig. 2, cut off by the end of the HyTES
swath at the northern edge, is one example, for which we could trace
down the origin to a leaking storage tank (Movie S1). In the re-
mainder of this manuscript, we focus on the large-scale AVIRIS-NG
survey and quantitative upscaling of total flux rates.

AVIRIS-NG. For AVIRIS-NG, we used a linearized matched filter
technique for the entire dataset as well as using the Iterative
Maximum a Posteriori Differential Optical Absorption Spec-
troscopy (IMAP-DOAS) method for selected scenes (Materials
and Methods). Both methods derive column methane enhance-
ments, expressed in ppm × meters, representing the plume
methane mixing ratio if the plume was 1 m thick. In total, we
identified 245 individual point sources and computed an in-
tegrated methane enhancement (IME) for each, integrating the
total mass of excess methane within the plume structure (Mate-
rials and Methods).
Here, we use IME as a proxy for the total methane flux from a

point source, as emissions and methane enhancements are line-
arly related at constant wind speed, and full plume inversions for
more than 250 point sources are not yet feasible. We tested the
approach against both Gaussian Integral inversions (Materials and
Methods, Supporting Information, and Figs. S1–S5) and flux esti-
mates derived using a mass balance approach with in situ mea-
surements obtained during circling known sources at different
height levels (similar to ref. 14). For the former, we selected in-
dividual plumes of variable size and used Gaussian Integral mod-
eling to invert the flux based on the remotely sensed plume
structure and magnitude. For the latter, we performed joint over-
flights on 22 April, targeting three previously identified methane
sources of variable strength. While circular patterns were flown
around the respective site for about 20 min to 30 min using an
aircraft equipped with in situ methane measurements, AVIRIS-NG
observed the scene three to four times.

Fig. 1. Airborne Experiment overview of the Four Corners area. The ground
projections of individual airborne imagery are shown for both instruments.
(Inset) The previous SCIAMACHY enhancements (2).

Fig. 2. HyTES methane plume examples for a small, intermediate, and large plume (left to right), related to well pads as well as a storage tank, positively
identified by the ground crew (Movie S1). Note the scale difference of the pictures.

Frankenberg et al. PNAS | August 30, 2016 | vol. 113 | no. 35 | 9735

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1605617113/video-1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605617113/-/DCSupplemental/pnas.201605617SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605617113/-/DCSupplemental/pnas.201605617SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605617113/-/DCSupplemental/pnas.201605617SI.pdf?targetid=nameddest=SF5
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1605617113/video-1


The results are shown in Fig. 3, with very high correlations for
both comparisons. In the following, we use the averaged slope
between the two methods to estimate methane fluxes from IME.
Owing to variable meteorological conditions in the complex
terrain, errors on individual estimates can be high. In a statistical
sense, many of these errors will cancel out in aggregates, how-
ever, as variable conditions will lead to both overestimations and
underestimations. In the absence of direct wind measurements
for each of the >200 plumes, we have to rely on statistical ap-
proaches to characterize the area quantitatively. In addition, many
emissions, such as liquid unloading events (15, 16), are transient
and more variable in time than our actual measurement error
during a specific overpass. Performing a large-scale survey with
AVIRIS-NG provides a representative statistical distribution if
individual events are randomly distributed in time. It should be
noted that the Gaussian Inversions assumed 2-m/s wind speed, and
the three direct aircraft inversions were performed at 2- to 3-m/s
wind speed, whereas the average wind speed for all aircraft in situ
inversions was 4 m/s. Our upscaling is thus more likely to be con-
servative rather than an overestimate.
We find that the flux rates follow a lognormal distribution, as

shown in Fig. 4 for all 245 plumes detected by AVIRIS-NG.
Other studies have discussed and observed this type of distri-
bution (3, 4), but here this emissions distribution was observed
for a range of point sources over a large geographic scale within
1 wk. Fig. 4 also shows plume examples for a diverse range of
estimated fluxes, as indicated by numbered vertical gray lines in
the flux distribution plot. Even though our quantitative upscaling
may be prone to large individual errors, especially due to wind
variation, the lognormal distribution would not be strongly af-
fected by this, thus robustly summarizing the overall source
distribution using actual data with full spatial coverage across a
wide geographical area.
A few of the plumes warrant a more detailed discussion. Plume

#2 represents one example where the AVIRIS-NG real-time
methane retrieval was invaluable. As can be seen, the methane
plume appears unrelated to any gas processing facility and might
have been considered spurious without corroboration. In this case,
however, the ground team could follow up, and they positively
identified a pipeline leak (Movie S2) and subsequently reported
to the operating company, which shut down the pipeline and
commenced repair the day after. The same happened at another
location during the campaign, with ground confirmation and
subsequent reporting to the pipeline operator. Two additional

potential locations (Fig. S6) were identified in March 2016 while
preparing this manuscript and have been reported to the respective
state authorities. These have been subsequently confirmed as a
pipeline leak and natural seep.
Plume #4, with a flux rate around 100 kg/h, was also followed up

by the ground team and could be traced to a hatch in an un-
derground storage tank (Movie S3). Plume #6, with an estimated
flux rate of ∼1,600 kg/h, is a coal mine venting shaft, about 7.5 km
to the east of the TCCON station. It represents a strong source,
which has been sampled by the in situ aircraft multiple times, with
direct flux estimates ranging from 360 kg/h to 2,800 kg/h, in line
with our estimate. Example #7 has been observed multiple times
as well, and its origin is unclear, as the site was inaccessible to the
ground team. The estimated flux is slightly higher than the venting
shaft and is caused by multiple strong plumes, presumably ema-
nating from newly built gas production and processing facilities.
This site is only 3.5 km to the east of the coal mine venting shaft
and is one example where the in situ aircraft suspected an addi-
tional strong source but was unable to trace it back to a specific
location. Even without quantitative methane retrievals, the mere
detection of individual plumes and the capability to geolocate
strong sources to within a few meters is invaluable for source at-
tribution and design of ground-based studies.
Plume #8 has to be treated differently, even though it represents

the highest observed flux rate, estimated at 7,500 kg/h. It was ob-
served at the gas processing facility near the Durango airport in
Colorado. As Durango was our base, we overflew this site multiple
times, usually without plume detection. On one particular occasion,
a very strong plume was found, even though the swath didn’t cover
the entire facility (swath edge indicated by thin white line in Fig. 4).
Knowing that this is a sporadic but very large source renders av-
erage flux estimation difficult without specific knowledge of in-
dustry practices and what caused that specific incident.
Apart from this large flux from plume #8, the entire dataset

constituting the flux distribution in Fig. 4 is based on the regular
survey flights only and thus excludes multiple overflights. Even
though individual flux rates can vary dramatically in time (as evi-
denced by plume #8), a large-scale survey should provide a statis-
tically representative sample, particularly when such a large number
of sources are sampled in the survey. Repeated mapping of the
entire area would be invaluable to assess source types and dis-
criminate permanent and transient fluxes. In the following analysis,
we divided the estimated flux from plume #8 by a factor of 4 to
account for the number of multiple overpasses. Summing up all
fluxes yields a regional total of ∼0.3 Tg/y, explaining about half of
the previously reported total of 0.59 Tg/y (2). Owing to the com-
plexities of the retrievals and the upscaling and intermittency of
sources, a full theoretical error propagation of all terms into a final
regional flux estimate is not necessarily meaningful. Hence, we
performed a nonparametric bootstrap analysis of the 245 plumes,
resulting in a 95% confidence interval of 0.23 Tg/y to 0.39 Tg/y.

Flux Distribution. The lognormal behavior directly implies a
heavy-tail distribution in absolute fluxes. The aerial surveys di-
rectly observed the lognormal distribution in a bottom-up survey.
The cumulative distribution function shows that the biggest 10%
of all plumes contributes about 60% to the inferred point source
flux (Fig. 5). Using a parametric bootstrap method, the range of
explained fluxes at the 10 percentile level ranges from 35 to 60%
of the overall point source flux.
The nature of the lognormal distribution explains the large

randomness of this explained fraction, as the sample size of large
emitters is very low and thus largely variable using random
draws. Another important aspect is the behavior of the low-flux
tail of the lognormal distribution. It might be argued that emissions
below our detection threshold of 2 kg/h to 5 kg/h [depending on
wind speed (8)] might contribute substantially to the total flux.
However, the theoretical lognormal curve, which would not be cut

Fig. 3. IME (x axis) against inverted methane fluxes (y axis) using two dif-
ferent datasets and techniques. The scaling factor is derived using three local
sources estimated using in situ airborne sampling circling the location at
different altitudes (blue) as well as Gaussian integration methods using the
observed plumes from AVIRIS-NG (red), for which an average wind speed of
2 m/s was assumed. The average of the slopes has been used for upscaling,
and the high r2 is driven by the largest fluxes.
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off below the threshold, shows negligible contributions from low
fluxes as well. A bimodal distribution with a peak at flux rates well
below our detection would need to exist if small fluxes were to
contribute substantially to the regional flux total. Airborne remote
sensing appears to be an effective way of identifying the biggest
point sources in large geographical areas and thus efficiently
mitigating avoidable emissions such as pipeline leaks or faulty
storage tanks.

Discussion and Conclusion
We performed a large-scale aerial survey in New Mexico and
Colorado to map methane plumes within a previously discovered

large-scale methane hotspot. For this study, satellite-based ob-
servations at the 60 × 30 km scale guided this detailed follow-up
study with imaging spectrometers and 1- to 3-m spatial resolu-
tion. A real-time methane retrieval further allowed us to provide
exact locations of individual points of interest to a ground team,
which could follow up with thermal infrared videos, narrowing
down the exact cause for various plumes, with most prominent
examples covering leaking storage tanks and pipeline leaks.
Using a simple linear scaling of integrated excess methane, we
derived estimates of methane flux rates, ranging from a few ki-
lograms per hour to several thousand kilograms per hour. Fig. 6

Fig. 4. Flux distribution of all 245 plumes observed by AVIRIS-NG with individual examples spanning the entire range of fluxes from low to high. Examples
include well pads (1 and 5), a confirmed pipeline leak (2), storage tanks (3 and 4), gas processing facilities (8), a coal mine venting shaft (6), and a cluster of
strong sources near a well completion site (7). The detection threshold is based on controlled release experiments performed at the Rocky Mountain Op-
erating Test Facility in Wyoming (8). The fitted lognormal distribution has a mean of 101.75 and a 1σ of 0.55. For comparison, the unique Aliso Canyon blowout
is depicted as a red line, corresponding to a maximum flux rate of 60,000 kg/h.
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provides an overview of all detected point sources (see Sup-
porting Information for details).
Our upscaled flux estimate of all point sources ranges from

0.23 Tg/y to 0.39 Tg/y, explaining 39 to 66% of the total regional
emissions determined for 2003 through 2009 (2). This finding
confirms earlier assumptions that most of the enhanced methane
is related to natural gas extraction as well as coal mining but also
that there is not a single source explaining most enhancements.
The observed lognormal source distribution further implies that
small sources below 1 kg/h contribute very little to the total flux
rate. However, it should be noted that our snapshots in time
might only catch periodic emissions that exceed our detection
threshold at the time of overpass, resulting in an overestimate for
these locations, while others are missed. Imaging thousands of
wells across the area should nevertheless provide a statistical
sampling and thus a nonbiased regional average. In the future,
repeat overflights can further discriminate transient from per-
sistent sources and thereby greatly help to evaluate source mit-
igation potentials across large geographic areas.
Our analysis shows that strong emitters dominate the regional

budget, with presumably lower marginal cost for emissions reduc-
tions. We have also demonstrated the ability to quantify and identify
both small and large point source emissions widely spread over
inaccessible geographic areas. Airborne remote measurements,
combined with in situ sensing, could thus provide a path forward
toward effective methane emission (monitoring) mitigation strat-
egies. A dedicated sensor with increased sensitivity through higher
spectral resolution would also reduce spurious signals (17) and
enable efficient automation of the retrieval and plume detection
chain, similar to current satellite retrieval algorithms.

Materials and Methods
AVIRIS-NG Methane Retrievals. AVIRIS-NG measures reflected solar radiation
between 0.35 μm and 2.5 μm with 5-nm spectral resolution and sampling.
Here, we used two related CH4 retrieval algorithms based on absorption
spectroscopy (7, 13), namely, (i) IMAP-DOAS and (ii) a linearized matched
filter technique.

The IMAP method was originally developed for use with the SCIAMACHY
satellite instrument (18) and has been modified for use with imaging spec-
trometers AVIRIS and AVIRIS-NG (7). Using a nonlinear iterative minimiza-
tion of the differences between modeled and measured radiance, we
quantitatively retrieve the excess methane abundances below the aircraft.

The real-time CH4 retrieval exploits a linearized matched filter strategy
described previously in ref. 13. We model the background radiance spectra
as a multivariate Gaussian having mean μ and covariance Σ, and estimate its
parameters using the image data in the appropriate pushbroom cross-track
location. The matched filter tests the null background case H0 against the

alternative H1 in which the background undergoes a linear perturbation by a
target signal t,

H0 : x∼Nðμ,ΣÞ H1 : x∼Nðμ+ αt,ΣÞ . [1]

Here α represents a scaling of the perturbing signal. The optimal discrimi-
nant is the classical matched filter α̂ðxÞ. It estimates α using a noise-whitened
dot product. This takes the form

α̂ðxÞ= ðx− μÞTΣ−1t

tTΣ−1t
. [2]

For our real-time retrieval, we calculate the target signature as the change in
radiance units of the background caused by adding a unit mixing ratio length of
CH4 absorption. The additional absorption acts as a thin Beer−Lambert atten-
uation of the background μ. Specifically, our target signature is the partial
derivative of measured radiance with respect to a change in absorption path
length ℓ by an optically thin absorbing layer of CH4. At ℓ= 0, we have

t=
∂x
∂ℓ

=−μe−κℓκ =−μκ, [3]

where κ represents the unit absorption coefficient and μ is the mean radi-
ance as before. The detected quantity α̂ðxÞ is a mixing ratio length in units of
ppb × km representing the thickness and concentration within a volume of
equivalent absorption.

For both retrieval techniques, we compute methane enhancements in
parts per million per meter, which is equivalent to an excess methane con-
centration in parts per million if the layer is 1 m thick (i.e., directly equivalent
to parts per billion per kilometer). At a scale height of about 8 km, the total
column averaged excess mixing ratio XCH4 would be about 0.000125 times
the excess in parts per million per meter. For example, 1,000 ppm/m is
equivalent to an XCH4 enhancement of 125 ppb.

HyTES Methane Retrievals. HyTES has sufficient spectral information in the 7.4-
to 12-μm region (256 bands) to resolve the spectral absorption signatures of a
variety of different atmospheric chemical species including CH4, NO2, NH3, SO2,
N2 O, and H2S. An in-scene atmospheric technique is first used to remove the
background attenuation from the intervening atmosphere and then find evi-
dence of the gas target signature that is assumed to be linearly superimposed
on the background radiance data. A CMF (19–21) is then used to generate a
weighting function based on a given specific target gas signature extracted
from the HITRAN high-resolution transmission molecular absorption database.
The weighting function is superimposed on the observed hyperspectral data to
generate a CMF image in which the intensity of the image correlates with the
presence of the desired gas signature.

In addition to the CMF detection algorithm, a HyTES CH4 concentration
retrieval algorithm was developed and adapted from the algorithm used for

Fig. 5. Black line denotes cumulative distribution function of summed
fluxes against flux percentiles (in descending order). Red line denotes cor-
responding flux rates at the respective percentile. The gray area shows the
95% confidence interval of the distribution, using a nonparametric boot-
strap method.

Fig. 6. Map of covered areas and detected point sources by HyTES (stars)
and AVIRIS-NG (red dots with estimated flux rates color-coded).
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retrieving trace gases from the Tropospheric Emission Spectrometer (TES)
onboard the Aura satellite. Using HyTES radiance spectra in the 7.5- to 9.2-μm
range, the HyTES-TES quantitative algorithm has been used to quantify
methane concentrations with a total error of ∼20% using uncertainties
determined primarily from instrument noise and spectral interferences from
air temperature, surface emissivity, and atmospheric water vapor (22).

Methane Flux Inversion. Emission rates from the remote sensing column in-
formation were obtained using a mass balance approach similar to (23, 24)

F =
Z Z

S

V  ~u ·~n  dS

≈~u ·~n 
X
i

Vi   ΔSi ,

where V denotes the vertical column of CH4, ~u is the wind. and ~n is the
normal vector on the boundary S. The integral is evaluated in its discretized
form on a straight cross-section with segments of length ΔS= 1 m and in-
terpolated vertical column information Vi.

For each target,multiple cross-sections orthogonal to thewind directionwere
defined at different distances to the analyzed sources. Thereby the background
was determined via a linear background fit over regions in the cross-section
outside the plume. Typically, each flank comprises about 10 to 20%of total data
points in a track. About 15 to 100 individual cross-sections were then averaged
for a mean emission rate. Examples are shown in Supporting Information.

IME.Weuse IME, ameasure of the total excessmass of observedmethane, as a
surrogate for fluxes of all identified plumes. We use a segmentation tech-
nique to isolate the methane plumes with an XCH4 minimum threshold of

200-ppm/m enhancements and subsequent summation of all pixels multi-
plied with the surface area S of an individual measurement i,

IME= k
Xn
i=0

XCH4ðiÞ · SðiÞ,

with a constant factor k to convert a methane volume into grams of CH4.
Observed excess IME ranged from 100 g to about 100 kg.

Thermal Infrared Videos: Movies S1–S3. A Xenics Onca-VLWIR-MCT-384 thermal
imaging camera was used to identify plumes as part of ground surveys. This
instrument has a 384 × 288 pixel resolution and HgCdTe detector sensitive
between 7.7 μm and 11.5 μm. For this study, a Spectrogon optical filter centered
at 7.746 μm was used as a digital filter applied to a contiguous spectrometer
output to match either an absorption or emission response of methane, cre-
ating contrast between methane plumes and the background.
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