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Climate change reduces extent of temperate
drylands and intensifies drought in deep soils
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Drylands cover 40% of the global terrestrial surface and provide important ecosystem
services. While drylands as a whole are expected to increase in extent and aridity in coming
decades, temperature and precipitation forecasts vary by latitude and geographic region
suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty
in the future of tropical and subtropical drylands is well constrained, whereas soil moisture
and ecological droughts, which drive vegetation productivity and composition, remain
poorly understood in temperate drylands. Here we show that, over the twenty first century,
temperate drylands may contract by a third, primarily converting to subtropical drylands, and
that deep soil layers could be increasingly dry during the growing season. These changes
imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the
importance of appropriate drought measures and, as a global study that focuses on temperate
drylands, highlight a distinct fate for these highly populated areas.
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of climatological aridity for the twenty first century'
Yet, GCM  projections of meteorological droughts are
uncertain and suggest robust increases in some but not all
regions®”. This uncertainty could have particularly strong
cnanu:nc:s for dryland regions®, which are already limited
by water®'°. Drylands may respond to climate change in their
distribution, driven by aridity, or in ccosystem structure,
function, and composition, driven by ecch)drolcglcal proceses
Global drylands expanded over the twentieth century by 4-8%
and represent currently c. 40% of the global terrestrial urtce
(refs 2,5). Despite observations of increasing overall aridity,
forecasts of extreme drought events in the second half of the
twentieth century remain uncertain %11, Model projections
largely agree, however, that drylands will likely continue to
expand during the twenty first century!>>10 due to increases in
evaporative demand and a global hydrological cycle with longer
and more severe dry periods'*1>%. A net expansion of drylands
may reduce ecosystem services and impact human livelihoods'*
through water scarcity!™ "16, vegetation die-offs!” and land
degradation'® all of which are exacerbated by human land
use’. The projected global trend towards increased aridity is
largc]y robust to variation among models and data sources, even
though potential evapotrnspiration by itself is unsuitable for
understanding drying trends' 22!, However, global temperature
and _ precipitation  projections _vary _geographically and
latitudinally"'” suggesting different outcomes for tropical and
s\lblropirz] (hereafier subtropical) drylands versus temperate
drylands at mid-latitudes®. Of particular concern for dryland
ecosystems, trends in meteorological drought and soil moisture
are highly uncertain and generally model dependent®”.

This uncertainty is especially complicated for soil moisture
availability, which is dictated by the combination of weather,
vegetation, soil and landscape attributes. In dryland ecosystems,
soil moisture controls most ecosystem processes®?%. Reduced
primary productivity occurs primarily during periods of reduced
soil moisture and not directly to an absence of precipitation®222%,
Conditions that diminish harvest yields due to below-normal
levels of soil moisture, particularly during the growing period,
have traditionally been called agricultural drought (in contrast,
for example, to meteorological drought which is a period of
below-normal ~ precipitation®). The notion of reduced soil
‘moisture has been extended to ecosystems and is referred to as
ecological drought®. Ecological drought is commonly described as
a ‘prolonged and widespread deficit in naturally available water
supplies [...] that create multiple stresses across ecosystems’
(US Geological Survey, US Climate Science Centers and the
Science for Nature and People Partnership) and has recently
garnered widespread attention as_one of the topics defining
twenty first century climate change’. Because of the complexity
of the water cycle, soil moisture and ecological drought
projections show large uncertainties among GCMs'"*7. Soil
moisture projections and drying trends are better constrained in
subtropical drylands because these are closely linked to the well-
represented Hadley Circulation!. Much of the existing research
on climate change impacts to drylands has focused on climatic
aridity and meteorological droughts, or has been restricted to
subtropical drylands. As a result, much less is known about
impacts of climate change on soil moisture and ecological
droughts, and in particular in temperate drylan

Vegetation responds to and influences soil moisture
through transpiration, interception, shading, and _hydraulic
redistribution®. Despite adaptations of dryland vegetation to
ambient nndlly levels'
warming under climate change remain difficult to constain
Potential outcomes include plant functional type shifts*2%,

G Tobal climate models (GCMs) project consistent increases

2

woody plant mortality!” and encroachment®, and resistance of
some vegetation types*. These vegetation responses vary among
plant functional types and depend on seasonal and soil depth
dynamics of soil moisture in addition to climate®?>?”. Three
plant functional types—shrubs, Cs grasses and C; grasses—most
frequently dominate temperate dlylznd vegetation. While all
types use shallow soil moisture, shrubs can use water from greater
depths®?2. Shifts in the relative dominance of plant functional
types, particularly those involving woody species, can impact
ccosystem  water _ balance by altenng water e
. Woody a

concern in- grass-dominated dry]ands worldwide dunng "the
twentieth century and is projected to increase under climate
change?®. Changes in vegetation in response to changes in soil
moisture may impact ecosystem services in temperate dryland
ecosystems globally.

applied a two-tiered approach to assess consequences of
climate change for global temperate, arid and semiarid drylands.
First, we quantified zones of contraction, expansion and stability
of the distribution of five temperate dryland regions. Second, we
estimated impacts of climate change on seasonal and depth
patterns of ecological drought, and their consequences for plant
water uptake using SOILWAT?32%, an ecosystem water balance
simulation model. SOILWAT utilizes site-specific soils and
weather data (here we evaluated spatially and temporally
downscaled output from 16 GCMs driven by an intermediate
and a high emissions scenario), and SOILWAT soil moisture
outputs compare very favourably with GCM estimates (see
Methods). Furthermore, SOILWAT provides high  temporal
resolution (daily) information about ecosystem water balance
and plant available moisture that reflects the influence of
site-specific soil conditions.

Here we illustrate that GCMs for the late twenty first century
project a net loss of c. 15% (following the representative
concentration pathway (RCP) 4.5 (ref. 1)) to 30% (following
RCPS.5) of current temperate dryland extent due to climatic
changes. We show that the duration of ecological droughts during
growing periods may substantially increase, especially in deeper
(>zo cm) soils. Water uptake by vegetation under future climate

ould be increasingly reliant on surface soil moisture, favouring
hallow rooted over deep-rooted vegetation, which contrasts
with previous ~ projections of increasing dryland woody
encroachment®®. Plant water uptake patterns within and among
regions are projected to become more similar, suggesting a
homogenization of niche spaces and vegetation composition. Our
findings emphasize contrasting spatial _trajectories ~between
subtropical and temperate drylands and highlight the need to
assess seasonal as well as spatial patterns of soil moisture
dynamics to understand factors that shape the future of temperate
drylands and the services they provide.

Results

Spatial response of temperate drylands to climate change.
The extent of temperate drylands under current climate is
8.3 % 105km? based on aridity, climate zone, an¢ n annual
temperature (MAT) (Fig. 1 and Supplementary Table 1). This
corresponds 1o ¢. 5.6% of the global terrestrial surface and to
20-30%, varying by published estimates®’, of all arid and
semiarid areas globally. Changes in aridity, climate zone, and
mean annual temperature projected by GCMs will alter the future
distribution of temperate drylands, which we defined here
climatologically®. By the end of this century, climate change
could lead to a net contraction of temperate drylands of up to
24x10°km? (1.2-33 x 10°km® among 16 GCMs following
RCP8.5) with considerable variation among regions (Fig. 1 and

1814196 DO 10.1038/ncomms14196 | www nature.com/naturecommunications



NATURE COMMUN

Latitude

ARTICLE

Latitude.

70 60

90 80
Longitude

50 60
Longitude

70 80 80 9 100 110 120
Longitude

Figure 1| Current and future distribution of temperate drylands. (a) Five temperate dryland regions with their current extent for 1980-2010 (green):
(b) South Americz; (c) North Americz; (d) Western and Central Asia; (e) Mediterranean Basin; (f) Eastern Asia. (b-f) Future projected change in extent
under RCP8.5 for 2070-2100, depicted as stable (grey), contracting (orange; no longer temperate dryland in 2070-2100), and expanding (blue; newly
temperate dryland in 2070-2100) zones. Inset vertical histograms for b-f lustrate areal abundance in each category of GCM agreement about expansion
or contraction of temperate drylands. Left (grey-orange) histogram depicts GCM agreement (that is, number of GCMs that agree in the direction of
change) about the fate of current temperate drylands and shows the number of cells within each category ranging from pure grey (all 16 GCMs forecast
stable temperate drylands) to pure orange (all GCMs forecast conversion from temperate dryland to non-temperate and/or non-dryland). Right (ight
blue—dark blue) histogram indicates GCM agreement of temperate dryland expansion into new areas and shows the number of cells within each category
ranging from dark blue (all GCMs forecast conversion to temperate dryland) to light blue (one GCM forecasts conversion).

Supplementary Fig. 1 and Supplementary Table 2). RCP8.5
represents a ‘business as usual’ scenario, that is, no mitigation to
curb climate change, which will not occur if the Paris agreement™”
to keep the global mean temperature ‘well below 2 ° C above pre-
industrial levels’ is implemented. All results for the intermediate
emissions scenario RCP4.5, which assumes a stabilization of
emissions without overshoot, are given in Supplementary Figs
1-10 and Supplementary Tables 1-3, 5, 7, and 10, but are
qualitatively similar. While other studies indicate that drylands in
total may increase by 5-23% globally®3, that general statement
masks our result that temperate drylands may contract while
subtropical drylands expand. We found that a median of 36%
(24-51% among GCMs) of current temperate drylands would be
converted under the considered scenario mainly to warmer
subtropical drylands (Supplementary Table 3). An area equal to
% (6-20%) of the current extent would be added in the future as
temperate drylands, primarily because of increased aridity in
currently sub-humid areas ~(Supplementary Table 3). Our
assessment of contracting, stable, and expanding zones among
GCMs showed consistency in four regions (32-80% agreement),
but not in North America (19%; Fig. 1b-f insets).

Duration and distribution of ecological droughts. Ecological
droughts during growing periods, which we estimated as the
longest snow-free, frost-free period when soil water potential was
continuously < —3.0MPa, could last longer under projected
future scenarios (Fig. 2). Our model, driven by soil data and

climate inputs from 16 GCMs, projected increasing drought
periods in every temperate dryland region, except for parts of
Asia, that are not projected to shift in distribution under climate
change (Fig. 2 and Supplementary Tables 4-5). Ecological
droughts may become longer over 65% (31-96% among GCMs)
of the area of temperate drylands in surface soil layers (0-20 cm)
and 85% (68-97%) in deeper layers (>20cm). This increase in
growing season droughts coincided with a reduction of the warm/
wet season overlap due to increasing cold-season precipitation
(Supplementary Figs 2-6 and Supplementary Tables 6-7).
Increasing ecological drought, particularly during the warm
and dry season'”, is consistent with other evaluations'™*, and
will have consequences for dryland vegetation, including
elevated plant mortality, more frequent wildfires, and shifts in
plant functional types®!71%2223 East Asia is the only region
with projections that consistently diverged from the trend of
increasing ecological drought, which is consistent with previous
studies'. This may be related to East Asia being the only region
with a positive warm/wet season overlap (Supplementary Fig. 5).
Ecological droughts in East Asia may become shorter instead of
longer in over 43% (surface layers) and 26% (deeper layers) of the
region

The projected intensification of ecological droughts is more
pronounced for deep layers (+10%, 0-20%, corresponding
to +18 days, 8-38 days, longer dry periods) than surface layers
(0%, — 12 to 30%; + 2.6 days, —7 to 17 days) particularly for
contracting and expanding zones. This result was surprising since
increased cold-season precipitation might be expected to enhance
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Figure 2 | Duration of ecological droughts during growing season. Soil
drought (days) shown under current (black cross) and future projected
conditions under RCP8.5 for 2070-2100 in contracting (a), stable (b) and
expanding (¢) zones of temperate dryland regions. Error bars (horizontal
lines) represent minimum-maximum range of values among 16 GCMs and
median (circle) represent each region (Fig. T turquoise, South America;
orange, Easter Asia; purple, Western & Central Asia; pink, Western
Mediterranean; green, North America). We estimated the duration of
ecological droughts during growing periods s the longest snow-free,
frost-free period when soil water potential (SWP) < —3.0MPa
continuously.

available soil moisture at depth due to_ reduced evaporative
competition for percolating soil moisture®22. As a consequence of
differential drying of deep versus surface soil layers, future
vegetation was projected to extract more water from shallow
rather than deeper layers. Our simulations suggest that overall the
importance of transpiration from shallow layers increases under
climate change, that is, the proportion of total transpiration that
derives from deep layers decreases (Fig. 3 and Supplementary
Tables 4-5). We estimated the proportion of transpired water
derived from deep soil layers to decrease by a median of 8%
(4-12%) for South America, 2% (—2 to 7%) for Central and
Western Asia, 11% (7-15%) for the Western Mediterranean
basin, and 5% (— 1 to 9%) for North America. The exception was
again East Asia where we estimated increased water uptake (2%,
~2 to 5%) from deep soil layers (Supplementary Fig. 7 and
Supplementary Tables 4-5). Our simulation results suggest also
that transpiration from shallow layers may increase in the median
case in most regions. Median decreases occur in the Western

Mediterranean basin and the expanding zone of South America.
In addition, our results also indicate a heterogencous pattern
where the overall regional trends are interrupted at smaller spatial
scales (Supplementary Fig. 8 and Supplementary Tables 4-5).
This heterogeneous pattern of the geographic distribution of
increases and decreases is more prominent for transpiration
derived from soil moisture at deep soil layers (Supplementary
Fig. 9 and Supplementary Tables 4-5). Among regions and within
some regions (specifically East Asia, South America and the
Western Mediterranean), we found a negative relationship
between the projected change in the proportion of transpiration
derived from deep soil moisture and the current value (Fig. 4).
‘This negative relationship indicates a homogenization of plant
water uptake among soil layers implying a reduction of niche
spaces, associated plant functional types, and biodiversity$?2
within temperate drylands as a whole and within those regions
that display the negative relationship (Fig. 4).

Discussion
Net reductions in the area of temperate drylands occurred in our
projections following an  intermediate and @ high-emission
scenario across all five temperate dryland regions and illustrate

climate in addition to increased aridity in currently sub-humid
subtropical regions'>*1. Consequences for vegetation of a
shift from temperate to subtropical drylands include loss of
temperature-controlled ~ seasonal cycle, phenological _shifts,
increases in frost-intolerant species and dominance of C; over
C grasses. Furthermore, impacts on ecosystem services could
have large consequences for human well-being: aggressive human
diseases, including dengue and schistosomiasis’!, as well as
mound-building termites®?, occur in subtropical climates and
could expand as temperate drylands warm, whereas cool season
crops such as wheat and potato would no longer be economically
viable®.

Our findings suggest large and regionally variable shifts in the
distribution of temperate drylands under a changing climate, and
highlight the complex interplay between scasonal soil water
resources and intensified ecological droughts during the growing
season_that differ with soil depth. While increased water
availability at depth would be expected with more cold-season
precipitation (favouring woody and deep-rooted species®2),
our results suggest instead a soil moisture regime that is
increasingly dominated by longer ecological  droughts
particularly at depth and by available water restricted to surface
soils (favouring shallow-rooted herbaceous species®?) and the
cool season (favouring winter annuals, including invasive
grasses™). Increasing water scarcity in deep soils is relevant for
ecosystem function because soil moisture at depth is an important
resource for deep-rooted woody species as drought proceeds?”.
‘This indicates, for instance, that expected future increases of
woody plant encroachment*® may not be generalizable across all
drylands. Our study emphasizes the need to differentiate among
drylands and describes intensifications of seasonal and soil depth
patterns of drought that could affect temperate dryland plant
communities and the services they provide, including water
resources, wildlife habitat, soil conservation, agriculture and
carbon storage.

Methods

Study area. We identified temperate drylands using three crteria: mean annal

temperature (MAT),the Trevartha climate clasificaion scheme®, and the

FAO/UNE aridity index (AD) (ref. 36). In addition, we restricted the analyss to
i f

areas with soils of less than 90% sand content. We classified temperate arcas i
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Figure 3 | Climate-driven changes in the proportion of transpiration derived from deep soil moisture. (a) Current values; dark green indicates areas
with transpiration primarily from deep layers, 20 cm depth. (b-f) Impact of climate change in the study regions, expressed as the difference in the
proportion of transpiration derived from deep layers between future consensus projections under RCP8.S for 2070-2100 and current conditions, Dark
orange indicates decreasing proportion of transpiration from deep layers, dark blue indicates increasing, and grey indicates no change. Areas depicted
include all cels that are either current and/or future temperate drylands under any GCM (Fig. 1
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Figure 4 | Relationship of the proportion of transpiration derived from
deep soil moisture between current values and its future response.
Current values refer to transpiration derived from soil moisture at >20cm
depth; future response refers to the change between values under RCPB5
for 2070-2100 and current values. Regional responses are summarized for
each GCM by locally weighted polynomial regressions (lines) and 90%
data clouds (shaded areas) for all areas that meet either current and/or
future classification (Fig. 1; turquoise, South America; orange, Eastern Asia;
purple, Western & Central Asia; pink, Western Mediterranean; green, North
America). Coloured diamonds are median GCM for each region and error
bars indicate the GCM range.
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mcihire ovr he long runA 0. Sevel major s e ' be addressod
o a scratssepretmaion ofrespones s hts erctons 1o crssng
COzconcntaan ot coeyte sl n o7 bt e i
medel il beabe to eprsent the ulenge of epesimetal nd st
ervatons® 72 The mpartance of thse uncerante s ilusrated by the
m,;g ange of epotedsalas o servaions and xperiménee. e dte
tht responses 0 ceated COx-onanration of oyt waler-we ffctncy
may range from 0 to +120%,of transpiration from — 14 t
protuciony from 10 40%, and of sl motsrs rom 2010 1 108 wmk the
Phyiolgial esonse to CO oncentruton of phtoynthessand levele
water-use fficiency are reasonably unders our ably to prcict et
et th e ok b diedbed 3 vyl

Analysi ponse variables. Each SOILWAT simulation run produced daily
output for cach process and water compartment for the 31-year simulation period
discarding the first year as spin-up (see ‘Simulation framework). On the basis of
the daily data, we calculated derived oo variables (see next paragraph) and
hen aggregated temporally across 31 » mean and standard deviation. We
bt hes derted and sgpegtes varihis for e curnt dimae condiion
and o 16 G under tno RCPS. We captred the aiton among GCMs fo
cach RCP by agreement level of temperate dryland classfication and by

slcion of study are el o the ggrgation of sponse varale e (deuls
i “Variation of response variabls). Because our sim iment w
determinisic, we stimated effec sizes and performe
oo, bt no tasical hypothess esing’ We used R verion 3.2 e 76) for
all anlyses and for creating figures; we used the R package ‘maps’ version 3.0.2 to
add county borders o igursof geographic dta

on potential vegetation e imaed th o ol o o orimaon
surface soil depth
(DDGPO) and for deep soil layers >20cm depth (DDGP20) as the longest
v, ot e perod vhn sl vater pmm (SWP)< - 30MPa

wously. We estimated mean annual proportion of transpiration derived from
deep s massure (20 dept T2 2 he it of ranopiration esling
from water uptake from decp soillayers (T20) to transpiration resulting from water
uptake from all soil layers (T),

Variation of response variables. We llowed for varition among raster cells
within regions, variation among regions, variation among RCPs, and variation
among GCMs. Here, we reported results under RCPS.5, which s closely tracked by
recent greenhause gas emisions”. However, RCPS5 represnts a busines 35
usual’ tigation; if

temperature ‘well below 2°C above pre-industrial levels' is implemented, results
under RCP4.5 (Supplementary Information) or RCP2.6 (not simulated) could be
e i, the aicle, e o n Vrtan among =g o snang
GG (oot;overl vriation among RCP was for prcpitaton- et vrisbes
e o vaaon rmong G Sapermenary T3 The vaison smong

G sroe e 1 st vriton o entan ocaton of o sty st
(lmperte dlndsar deined as 8 functon ofclimate) ad due to i<l
vartion n focing from the 16 G

e etimated sl of spatil sgrcement by counting GOMs tht s el
as temperate dryland W denihed three shifing ronés for ach GME.
coniracting zone comprises clls with a temperate dryland under current, but not
under e cimse condinshe stable s comprscs cls i » s et

5 arcse lobal pogpe

Model represenaton of vegetain. ¢ s et 0 potcatil segttion
Charctred by three fancional roups, shrubs, Ca rases and C, o

6 URE COMMU

diand unde carnt and utur condions th expancing o
with x futre, but not current m.,dmm W eied
summaries by region and 5|u[|mg Zone in two ste Htancously account for
ot wyecs of vaiaton mong GCM, that mc ithin<ell and the sptl
h GCM the target
hove el Tt re o of 3 e and o I @ scond s e colclted the
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median value among the 16 GCM summary values and used the minimum-
‘maximum GCM range as indicator of among GCM variation. We determined for
each shift the contribution of ¢ach defining factor and determined whether a cell
changed e dimte dlasicatonbtween epperate and boreal™ (-3 mones
vith mean tempertre2 10° ), subroical™ (28 month with

emparaure =10°)or tropca® (13 monihs wih mean temperature=18°C),
and whether a el hanged the aridiy chssficaton’.

‘We estimated the rlative contributions of cells, regions,shifting zones, GCMs,
dKCPsto the arisionof wo groups of vt imte it/ divers AT,
MAP, AL PET. wet/warm-scsor overla) and the derived ccon
Tesporse varables We caeuoed the aniucly atibuable vrition ot on
addiive clements by Whittaker'*3! as percentage of the total varation for each
variable for the extent of the study area for each climate condition. We partiioned
the srstion for th bl varable vlus unde cachcimte condiion and 15
difference between future nt conditions. Absolute values indicated that
ot of the varation was atroutabe o amang-cll verain (meand 1 5. re
682 30% for climate drivers, and 63 £ 19% for response variables) and mast o the
rest to among.region variation (Supplementary Table 9). Variaion attributable to

ong GOM and among RCP varition were of st s, bt nly elean o

re and current conditons (20 11% and 22.%27% for
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not pimarily by potentil evapotranspiration rates, but by other factors including

sesonal sol moistue,sil conditons, and vegetation™ 3%, Unders n\dmg climate

VAT, which

i e o s B i d ot e o ARy g
it

odel d

Code availability. The source code of SOILWAT v0.10-gtd s available from our
github repository as R package hitps/github com/Burke-Lauenroth- Lab/Rsoilwat

analyse the simulation output are available from hitps:/github.com/drschlacp!
GTD_vulnerability.

Data availability. The data (simulation outputs) that support the findings of this
study are available from the John Wesley Powell Center for Analysis and Synthesis
(httpsiidoi org/10.5066/F7930RB1).

imate drver, and - 5% nd - 12%
among cimat divers fo the acbuion of KCP re becsse MAT and PET
vere primarly diven by variation n RCP whereas b divers (MAP. Al

e Season overlap) showed arger vrion among G

Comparison of SOILWAT results with other approaches. We compared
projections of GCMs against SOILWAT output of mean monthly soil moisture
The vatable mrg ol ol it conte) wesextrcedf even GCM
unde historical and uture (RCPAS and RCPSS) scenarios rom aled
data from the ESGF node hitps/pemdilnl govi. We calculated normzlxud mean
menttly values lur ihe perodsof 1980-2005 s 2070-209 fr cachof ou
with equivalent soil valu

from W AT ot e vt ageement beween mndzk with Dn\'tlller N
hich is the best index’ 0
and 1 Lis perfect 3 proposoml
to Pearson’s correlation index and accounts for systematic and unsystematic bias

 The comparion s voursbswith an averall agrsement e for e istorical

e ek of09-£007 (s among 7 G SOTLAT compurions) o
wll T the future tme period under RCPAS of 092 1004 (Suplems
Fig 10 and Supplementry Table 10). Regonal agrenent i mosly Sy
GCM-SOILWAT was low for East
e i 05753 which e 00474 00 o he o eiod e
et Our simulatons o the isorc tme peid were it
in-based weather data, wheress utput represents hindcasts.
o ol - et st ofchnie condioms o oo
simulations were based on GCM output. Thus, we expected a higher agreement
betweenour aimulaton s and those oy GO o he Gt e peiods
than for the historic period. Freedman et al* compared GRACE satelte
obseatons of & et slnm;e sith GOV predictions for 3002012 for
i Basin and fo

o comitr i GoN deo w.,u, nd i valr fsxprioning. I &
 al compared GRACE data to GCM predictions to select
ol mpact asesment and ound ntiesbi vriston amon

SOILWAT and GCM soil moisture values as wel (Supplementary Fig. 10 and
Supplementary Table 10}, particularly across Eastern Asia, which i a region where
several GCM: at

regime™.

‘We compared SOILWAT output t0 the demand-supply rlationship of water
sy inthe Bdo ramevork. We fited annaloutput o SOILWAT fox
F= Eyq | P, that i, the ratio of actual evapotranspiration (AET = oy, mm) to
annual precipitation (MAP = P, mm), against the Budyko aridity index
‘Al = /ATy, that i, the ratio of potential evapotranspiration (PET = e
) o anmal precplation. We sed Ut cquton o repeicat e x!udykn

s, F= 1+ Al — (1+ AI§)!™ (ref. 85); while Al, describes
orevaing chinaic condtion,ca be imapreed s th combned fonce on
Vater avalabilty of allother factors uch as vegetation s and sasonality . We
estimated o for each region based on mean annual SOILWAT output of AET and
PET by umericly inimin ared diffrencesbeween  and
1A (1 AT (res 8647) acros smolnted &

¢ reling bk urvs e wll Sortar output that was

4 without functional constraints, for example, when summarized b
localy weighted polynomil egesion e (Suppementy i 10), We fiodthis
fovorsbe agrsment vith the Bodyko Famevork despe e factthat
estimates of o are not precise us Gt o spatial
Eoead oo o) o b ot et e o
tempeae diands for cample,cels with Aly<2 are oy ot mcludcd
(but would information of the shape of the curves). T
Comparison conirms that tha actual evapotranspiration i dry egions i =
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